DCA CLASSES CLASS X – MATHEMATICS – CHAPTER 02 POLYNOMIALS

Name	2:				Date:		
CHOOSE THE CORRECT OPTION FROM QUES 1 TO 12							
Q01.	. Which of the following is polynomial?						
	(a) $x^2 - 6\sqrt{x} + 2$	(b) $\sqrt{x} + \frac{1}{\sqrt{x}}$		(c) $x^2 - 3x + 1$	(d) none of these		
Q02.	If α and β are the zeros of the quadratic polynomial P(x) = x ² – px + q, then the value of						
	$\alpha^2 + \beta^2$ is equal to						
	(a) p ² – 2q	(b) <u>p</u>		(c) q ² – 2p	(d) none of these		
Q03.	If α and β are zeroes of $x^2 + 5x + 8$ then the value of $(\alpha + \beta)$ is						
	(a) 5	(b) — 5		(c) 8	(d) – 8		
Q04.	The sum and product of the zeros of a quadratic polynomial are 2 and – 15 respectively.						
	The quadratic polynomial is						
	(a) $x^2 - 2x + 15$	(b) $x^2 - 2x -$	15	(c) x ² + 2x – 15	(d) x ² + 2x + 15		
Q05.	If $P(x) = 2x^2 - 3x + 5$	5, then $P(-1)$ is ec	qual to				
	(a) 7	(b) 8		(c) 9	(d) 10		
Q06.	Zeroes of $P(x) = x^2 - x^2$	– 2x – 3 are					
	(a) 3 and 1	(b) 3 and – 1		(c) - 3 and - 1	(d) 1 and – 3		
Q07.	If α and β are the zeros of $2x^2 + 5x - 10$, them the value of $\alpha\beta$ is						
	(a) $-\frac{5}{2}$	(b) 5		(c) — 5	(d) $\frac{2}{5}$		
Q08.	A quadra <mark>tic poly</mark> nomial, the sum and product of zeros are 0 and $\sqrt{5}$ respectively is						
	(a) $x^2 + \sqrt{5}$	(b) $x^2 - \sqrt{5}$		(c) x ² – 5	(d) none of these		
Q09.	Degree o <mark>f polyn</mark> om	ial $y^3 - 2y^2 - \sqrt{3y}$	+ 1/2 is				
	(a) $\frac{1}{2}$	(b) 2		(c) 3	(d) $\frac{3}{2}$		
Q10.	Zeroes of $P(x) = 2x^2$	² + 9x – 35 are			-		
	(a) 7 and $\frac{5}{2}$	(b) – 7 and $\frac{5}{2}$		(c) 7 and 5	(d) 7 and 2		
Q11.	The quadratic polynomial whore zeros are 3 and – 5 is						
	(a) x ² + 2x - 15	(b) x² + 3x –	8	(c) x ² - 5x - 15	(d) none of these		
Q12.	Polynomial $2x^4 + 3x^3 - 5x^2 - 5x^2 + 9x + 1$ is a						
	(a) Linear polynomial			(b) quadratic polynomial			
	(c) cubic polynomial			(d) Bi quadratic	(d) Bi quadratic polynomial		

DCA CLASSES

- **Q01.** Find the quadratic polynomial where sum and product of the zeros one a and $\frac{1}{2}$.
- **Q02.** If α and β are the zeroes of the quadratic polynomial f (x) = x² x 4. Find the value of $\frac{1}{\alpha} + \frac{1}{\beta} \alpha\beta$.
- **Q03.** If the square of the difference of the zeroes of the quadratic polynomial $f(x) = x^2 + px + 45$ is equal to 144, find the value of p.
- **Q04.** Find the value of 'k' such that the quadratic polynomial $x^2 (k + 6) x + 2(2k + 1)$ has sum of the zeros is half of their product.
- **Q05.** If α and β are the zeroes of the quadratic polynomial $f(x) = x^2 p(x + 1) c$, show that $(\alpha + 1)(\beta + 1) = 1 c$
- **Q06.** If the sum of the zeroes of the quadratic polynomial $f(t) = kt^2 + 2t + 3k$ is equal to their product, find the value if 'k'.
- **Q07.** Find the zeros of the polynomial $p(x) = 4\sqrt{3}x^2 + 5x 2\sqrt{3}$ and verify the relationship b/w the zeros and its coefficients.
- **Q08.** Find the value of 'k' so that the zeroes of the quadratic polynomial $3x^2 kx + 14$ are in the ratio 7: 6.
- **Q09.** If one zero of the quadratic polynomial $f(x) = 4x^2 8kx 9$ is negative of the other, find the value of 'k'.
- **Q11.** If α and β are the zeros of the polynomial $f(x) = x^2 + px + q$ form polynomial whose zeros are $(\alpha + \beta)^2$ and $(\alpha \beta)^2$.
- Q12. Factorize
 - (a). $x^3 + 8y^3 + 64z^3 24$
 - (c). $1 a^2 b^2 2ab$

(b).
$$x^{2} + y - xy - x$$

(d). $\frac{3}{2}x^{2} - x - \frac{4}{3}$