DCA CLASSES

CLASS - IX MATHEMATICS – CHAPTER 02

POLYNOMIALS

Name:					Date:	
01 . Which of the	followi	ing expression is a mon	omial			
(a). 3 + x		(b). 4x ³	(c)	. x ⁶ + 2x ² + 2	(d). None of these	
02. Which of the	followi	ing expression is a poly	nomial?			
(a). x ³ – 1		(b). √x + 2	(c)	$x^2 - \frac{1}{x^2}$	(d). $\sqrt{t} + 5t - 1$	
03. A polynomia	l of deg	ree 3 in x has at most		A		
(a). 5 terms		(b). 3 terms	(c)	. 4 terms	(d). 1 term	
04. The coefficie	nt of x ²	in the polynomial 2x ³ +	- 4x ² + 3x +	1 is		
(a). 2		(b). 3	(c)	. 1	(d). 4	
05. The monomi	al of de	gree 50 is				
(a). x ⁵⁰ + 1		(b). 2x ⁵⁰	(c)	. x+50	(d). 50	
06 . If $P(x) = x^3 - $	1, then	the value of P(1) + P(-1)) is			
(a). 0		(b). 1	(c)	. 2	(d) 2	
07 . when polynomial $x^3 + 3x^2 + 3x + 1$ is divided by x + 1, the remainder is						
(a). 1		(b). 0	(c)	. 8	(d). – 6	
08 . The value of K for which x – 1 is a factor of the polynomial $4x^3 + 3x^2 - 4x + K$ is						
(a). 0		(b). 3	(c)	. – 3	(d). 1	
09 . The factors $12x^2 - x - 6$						
(a). (3x – 2)	(4x + 3)	(b). (12x + 1) (x – 6)	(c)	. (12x – 1) (x + 6)	(d). (3x + 2) (4x – 3)	
10 . The value of	102 ³ is					
(a). 106120 <mark>8</mark>	3	(b). 1001208	(c)	. 1820058	(d). none of these	
11 . $(a-b)^3 + (b-c)^3 + (c-a)^3$ is equal to						
(a). 3abc		(b). 3(a-b) (b-c) (c-a) (c)	. 3a³b³bc³	(d). [a-(b+c)] ³	
12 . The zeroes of the polynomial $P(x) = x (x-2) (x+3)$ are						
(a). 0		(b). 0, 2, 3	(c)	. 0, 2, -3	(d). none of these	
13. If (x+1) and (x-1) are factors of Px ³ + x ² -2x+9 then value of p and q are						
(a). p = -1, q	= 2	(b). p = 2, q = -1	(c)	. p = 2, q = 1	(d). p = -2, q = -2	
14 . If x + y + z = 0	D, then :	$x^{3} + y^{3} + z^{3}$ is				
(a). xyz		(b). 2xyz	(c)	. 3xyz	(d). 0	
15. The value of	(x – a) ³	$(x - b)^{3} + (x - c)^{3} - 3$	(x – a) (x –	b) $(x - c)$ when a	a + b + c = 3x, is	
(a). 3		(b). 2	(c)	. 1	(d). 0	
16 . Factors of x ²	+ 3√2x	+ 4 are				
(a). (x + 2√2	2) (x – √	(2) (b). $(x + 2\sqrt{2}) (x + \sqrt{2})$	2) (c)	(c). $(x - 2\sqrt{2}) (x + \sqrt{2}) (d)$. $(x - 2\sqrt{2}) (x - \sqrt{2})$		
17 . The degree of	of const	ant function is				
(a). 1		(b). 2	(c)	. 3	(d). 0	

DCA, PLOT 18 C, SHRI GANGA VIHAR, DEENPUR

9654690708, 8851948981

DCA CLASSES

18 . x ³ + y ³ + z ³ - 3xyz is				
(a). $(x + y - z)^3$	(b). $(x - y + z)^3$	(c). $(x + y + z)^3 - 3xyz$ (d). $(x+y+z) (x^2 + y^2 + z^2 - xy - yz - zx)$		
19. The expended form	of $(x + y - z)^2$ is			
(a). $x^2 + y^2 + z^2 + 2xy$	y + 2yz + 2zx	(b). $x^2 + y^2 - z^2 + 2xy - 2yz - 2xz$		
(c). $x^2 + y^2 + z^2 + 2xy$	y — 2yz — 2zx	(d). $x^2 + y^2 + z^2 + 2xy + 2yx + 2xz$		
20. A linear polynomial				
(a). May have one z	zero	(b). has one and only one zero		
(c). May have two z	ero	(d). May have more than one zero		

Q01. Factorize

(d). $\frac{3}{2}x^2 - x - 4/3$ (a). $x^3 + 8y^3 + 64z^3 - 24$ (b). $x^2 + y - xy - x$ (c). $1 - a^2 - b^2 - 2ab$ (e). $8a^3 - b^3 - 12a^2b + 6ab^2$ (f). $64y^3 + 125z^3$ (g) $27m^3 - 343n^3$ (h). $3(x+y)^2 - 5(x+y) + 2$ (i). $x^6 + 3y^6 - z^6 + 6x^2y^2z^2$ (j). $x^3 + y^3 + z^3 - 9xyz$ (k). $x^6 - 64$ (I). $12(y^2 + 7y)^2 - 8(y^2 + 7y)(2y - 1) - 15(2y - 1)^2$ (m) $(2x - 3y)^3 + (3y - 4z)^3 + (4z - 2x)^3$ (n). $2y^3 - \frac{4y^2 - 2y + 4}{4y^2 - 2y + 4}$ (o). $2x^2 + 7x + 3$ (p). $x^3 + 13x^2 + 32x + 20$

Q02. Divide f(x) by g(x) & verify that the remainder $f(x) = x^3 + 4x^2 - 3x - 10$, g(x) = x + 4

Q03. Using remainder theorem find the remainder when f(x) is divided by g(x)

 $f(x) = x^{24} - x^{19} - 2$ g(x) = x + 1

Q04. Using factor theorem check whether
$$g(x)$$
 is factor of $p(x)$, $p(x) = x^3 - 4x^2 + x + 6$, $g(x) = x - 3$

Q05. Find the value of K it x - 2 is factor of $4x^3 + 3x^2 - 4x + K$

Q06. Find K if x + 1 is a factor of P(x) = Kx² - 2x + 2

- Q07. If x 3 and x 1/3 are both factors of $px^2 + 5x + r$, then show that P = r
- **Q08**. Find the values of m and n if the polynomial $2x^3 + mx^2 + nx 14$ has x 1 and x + 2 as its factors.
- **Q09**. Find m and n it x 1 and x 2 exactly divide the polynomial $x^3 + mx^2 nx + 10$
- **Q10**. Find the value of k, if x-1 is factor of P(x) and P(x) = $3x^2 + kx + \sqrt{2}$
- **Q11**. Without actually Calculating the cubes, find the value of $(-12)^3 + (7)^3 + (5)^3$
- Q12. Using suitable identify expand

(a).
$$(\frac{5}{4}x + \frac{3}{4})^3$$
 (b). $(\frac{a}{2} - \frac{b}{3} + 1)^2$ (c). $(\frac{2}{3}x + 1)^3$ (d). $(x - \frac{2}{3}y)^3$
Q13. Using factor theorem factorise $f(x) = x^2 - 5x + 6$

- Q14. Without actual division, prove that the polynomial $2x^3 + 4x^2 + x 34$ is exactly divisible by (x 2)
- **Q15**. Check whether 7+ 3x is a factor of $3x^2 + 7x$
- Q16. Without actually calculating the cubes. Find the value of $(26)^3 + (-15)^3 + (11)^3$
- **Q17.** If $x^2 bx + c = (x + p)(x q)$ then factorise $x^2 bxy + cy^2$
- **Q18**. Show that 5 is a zero of polynomial $2x^3 7x^2 16x + 5$
- **Q19**. Find the integral zeroes of the polynomial $x^3 + 3x^2 x 3$
- Q20. Verify each of the following identifies

(b). $x^3 - y^3 = (x - y) (x^2 + xy + y^2)$ (a). $x^3 + y^3 = (x + y) (x^2 - xy + y^2)$

DCA CLASSES

Q21. Evaluate

- (a). 101² (b). 99³ (c). 105 x 95
- **Q22**. Using identify $(a + b)^3 = a^3 + b^3 + 3ab (a + b)$ drive the formula $a^3 + b^3 = (a + b)(a^2 ab + b^2)$
- **Q23**. Using remainder theorem factorise $x^3 3x^2 x + 3$.
- **Q24**. Find the values of m and n so that the polynomial $x^3 mx^2 13x + n$ has x-1 and x+3 as factors.
- **Q25**. Prove that $x^2 + 6x + 15$ has no zero.
- **Q26**. The volume of a cuboid is given by the expression $3x^3-12x$. Find the possible expressions for its dimensions.
- **Q27.** If $y^2 + ay^2 + by + 6$ is divisible by y–2 and leaves remainder 3 when divided by y–3, find the values of a and b.
- **Q28**. The volume of a cuboid is given by the algebraic expression ky²-6ky + 8k. Find the possible expressions for the dimensions of the cuboid.