# CLASS IX – MATHEMATICS – CHAPTER 07

#### TRIANGLES

| Name:                                                                                                                      |                                   |                                           |                                           |                    |              | Date:                                       | D 1C             |
|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------|-------------------------------------------|--------------------|--------------|---------------------------------------------|------------------|
| <b>01</b> In fig if AD                                                                                                     | = BC and                          |                                           | then 1                                    | ACR is equal       | to           |                                             |                  |
|                                                                                                                            | (a) $\angle ABD$ (b) $\angle BAD$ |                                           |                                           |                    | 10           |                                             |                  |
| (a). ZADD (b). ZDAD (c). ZDAC (c). ZDAC (c). ZDDA $\underline{A} \underline{B}$                                            |                                   |                                           |                                           |                    |              |                                             |                  |
|                                                                                                                            | LD IS a Yu                        |                                           |                                           | (c) < ACD          | LD, anu      | $(d) \land BAD$                             | LCAD IS Equal to |
| (a). $\angle ACD$ (b). $\angle CAD$ (c). $\angle ACD$ (d). $\angle DAL$                                                    |                                   |                                           |                                           |                    |              |                                             |                  |
|                                                                                                                            | nu–ponn                           |                                           | 0 – ZA                                    | $(c) \neq OPO$     | AP is eq     |                                             |                  |
|                                                                                                                            | nd CD -                           | $(D)$ . $\angle OQB$                      |                                           | (C). ZQBO          |              | (u). 200Q                                   | 4 4              |
| (a) $A \mathbb{P} \neq A \mathbb{C}$                                                                                       |                                   | (h) AB = BC                               | estater                                   | (c) A B = A D      |              | (d) AD - AC                                 |                  |
| (d). AD $\neq$ AU                                                                                                          | (D). AD – DC                      | $\langle \mathbf{D} - \mathbf{C} \rangle$ | (C). $AD = AD$<br>$B = 65^{\circ}$ find v |                    | (u). AB = AC | × /~    · · · · · · · · · · · · · · · · · · |                  |
|                                                                                                                            | (b) 700                           | ZB = 0                                    | $(c) = 60^{\circ}$                        |                    |              |                                             |                  |
| (d). $\overline{OU}^{2}$                                                                                                   |                                   | (D). $70^{2}$                             |                                           | (C). 50°           |              | (d). None of th                             | ese              |
|                                                                                                                            | u ZACD=                           | $(h) \in \Omega^0$                        |                                           | $(a) = 70^{\circ}$ |              | (d) none of th                              |                  |
| $(a). 50^\circ$                                                                                                            | ourse of t                        | (D). 60°                                  |                                           | (C). 70°           |              | (d). None of th                             | ese              |
| (a) 200                                                                                                                    | sum or t                          | (h) 200                                   |                                           | (a) 1000           |              |                                             |                  |
| (a). $260^{\circ}$                                                                                                         |                                   | (D). 360°                                 |                                           | (C). 180°          |              | (d). 90°                                    |                  |
| <b>U8</b> . The sum of                                                                                                     | the trian                         | gie will be:-                             |                                           | (-) 1000           |              | (1) 000                                     |                  |
| (a). 360°                                                                                                                  | 1 40                              | (D). $2/0^{\circ}$                        |                                           | (C). 180°          | 1            | (a). 90°                                    |                  |
| <b>U9</b> . An angle is .                                                                                                  | 14° more                          | than its comple                           | ement.                                    |                    | sure.        | (4) (2)                                     |                  |
| (a). 42°                                                                                                                   |                                   | (D). 32°                                  |                                           | (C). 52°           |              | (a). 62°                                    |                  |
| <b>10</b> . An angle is 4                                                                                                  | 4 time its                        | complement. F                             | ind me                                    | asure.             |              | (1) 100                                     |                  |
| (a). 62°                                                                                                                   |                                   | (b). 72°                                  |                                           | (C). 52°           |              | (d). 42°                                    |                  |
| 11. Find the me                                                                                                            | asure of                          | angles which is                           | equal t                                   | o its supplen      | nentary.     | ( 1) 0.00                                   |                  |
| (a). 120°                                                                                                                  | <b>C</b> 11 · ·                   | (b). 60°                                  |                                           | (c). 45°           | 2            | (d). 90°                                    |                  |
| 12. Which of th                                                                                                            | e followi                         | ng pairs of angle                         | e are su                                  | ipplementary       | /?           |                                             |                  |
| (a). 30°, 12                                                                                                               | 0°                                | (b). 45°, 135                             | ,<br>, , ,                                | (c). 120°, 30      |              | (d). None of th                             | iese.            |
| <b>13</b> . Find the measure of each exterior angle of an equilateral triangle.                                            |                                   |                                           |                                           |                    |              |                                             |                  |
| (a). 110°                                                                                                                  |                                   | (b). 100°                                 |                                           | (c). 120°          |              | (d). 150°                                   |                  |
| <b>14</b> . In an isosceles $\triangle ABC$ , is $AB = AC$ and $\angle A = 90^{\circ}$ , Find $\angle B$ .                 |                                   |                                           |                                           |                    |              |                                             |                  |
| (a). 70°                                                                                                                   |                                   | B) 80°                                    |                                           | (c). 95°           |              | (d). 60°                                    |                  |
| <b>15</b> . In a $\triangle ABC$ , is $\angle B = \angle C = 45^{\circ}$ , Which is the longest side?                      |                                   |                                           |                                           |                    |              |                                             |                  |
| (a). BC                                                                                                                    |                                   | (b). AC                                   |                                           | (c). CA            |              | (d). None of th                             | iese.            |
| <b>16</b> . In a $\triangle$ ABC, is AB = AC and $\angle$ B= 70°, Find $\angle$ A.                                         |                                   |                                           |                                           |                    |              |                                             |                  |
| (a). 40°                                                                                                                   | _                                 | (b). 50°                                  |                                           | (c). 45°           |              | (d). 60°                                    |                  |
| <b>17</b> . In a $\triangle$ ABC, If $\angle$ A = 45° and $\angle$ B = 70°. Determine the shortest sides of the triangles. |                                   |                                           |                                           |                    |              |                                             |                  |
| (a). AC                                                                                                                    |                                   | (b). BC                                   |                                           | (c). CA            |              | (d). none of th                             | ese              |

- **18**. In a  $\triangle$ ABC, if  $\angle$ A = 45° and  $\angle$ B = 70°, determine the longest sides of the triangle.
- (a). AC (b). CA (c). BC (d). none of these
- **19**. The sum of two angles of a triangle is equal to its third angle. Find the third angles.
  - (a). 90° (b). 45° (c). 60° (d). 70°
- 20. Two angles of triangles are 65° and 45° respectively. Find third angles.
  (a). 90°
  (b). 45°
  (c). 60°
  (d). 70°
- **Q01**. In a quadrilateral ACBD, AC=AD and bisects  $\angle A$ . show  $\triangle ABC \cong \triangle ABD$ ?
- Q02. If DA and CB are equal perpendiculars to a line segment AB. Show that CD bisects AB.
- **Q03**. L and M, two parallel lines, are intersected by another pair of parallel lines P and C. Show that  $\triangle ABC \cong \triangle CDA$ .
- **Q04**. In fig the bisector AD of  $\triangle$ ABC is  $\perp$  to the opposite side BC at D. show that  $\triangle$ ABC is isosceles?
- **Q05**. If  $\triangle ABC$ , the bisector of  $\angle ABC$  and  $\angle BCA$  intersect each other at the point prove that  $\angle BOC = 90 + \frac{1}{2} \angle A$ .
- **Q06**. Prove that is one angle of a triangle is equal to the sum of the other two angles, triangle is right angled:
- Q07. IF fig 1.4, if PQ⊥PS, PQ||SR, ∠SQR = 28° and ∠QRT = 65°, then find the values of X and Y.
- Q08. If in fig. AD = AE and D and E are point on BC such that BD = EC. Prove AB=AC.
- **Q09**. If AE = AD and BD = CE. Prove that  $\triangle AEB \cong \triangle ADC$ .
- **Q10**. In quadrilateral ABCD, AC=AD and AB bisects  $\angle A$ . show that  $\triangle ABC \cong \triangle ABD$ . What can you say about BC and BD?
- **Q11**. In  $\triangle$ ABC, the median AD is  $\perp$ to BC. Prove that  $\triangle$ ABC is an isosceles triangle.
- **Q12**. Prove that  $\triangle$  ABC is isosceles if altitude AD bisects  $\angle$  BAC.
- **Q13**. In the given figure, AC=BC,  $\angle$ DCA =  $\angle$ ECB and  $\angle$ DBC =  $\angle$ EAC. Prove that  $\triangle$ DBC and  $\triangle$ EAC are congruent and hence DC = EC.
- **Q14**. From the following fig. prove that  $\angle BAD = 3 \angle ADB$ .
- **Q15**. O is the mid-point of AB and CD. Prove that AC=BD and AC||BD.
- **Q16**. ABCD is a quadrilateral in which AD=BC and  $\angle$ DAB =  $\angle$ CBA. Prove that.

(a).  $\triangle ABD \cong \triangle BAC$  (b). BA=AC (c).  $\angle ABD = \angle BAC$ 

**Q17**. ABC is an isosceles triangle in which altitudes BE and CF are drawn to side AC and AB respectively. Show that these altitudes are equals.



DCA, PLOT 18 C, SHRI GANGA VIHAR, DEENPUR





#### **Q18**. If AC = AE, AB = AD and $\angle$ BAD = $\angle$ EAC. Show that BC =DE.

**Q19**. Line *I* is the bisector of an angle  $\angle A$  and B is any point on *I*. BP and BQ are  $\bot$  from B to the arms of  $\angle A$  show that:

(a).  $\triangle APB \cong \triangle AQB$  (b). BP = BQ or B is A equidistant from the arms of  $\angle A$ 

- **Q20**. In the given figure,  $\triangle ABC$  is an isosceles triangle and  $\angle B = 65$ , find x.
- Q21. AB is a line-segment. AX and BY are equal two equal line-segments drawn on opposite side of line AB such that AX||BY. If AB and XY intersect each other at P. Prove that

(a).  $\triangle APX \cong \triangle BPY$ , (b). AB and XY bisect each other at P.

**Q22.** In an isosceles  $\triangle ABC$ , with AB =AC, the bisector of  $\angle B$  and  $\angle C$  intersect each other at O. Join A to O. show that:

(a). OB = OC (b). AO bisects  $\angle A$ .

**Q23**. Two side AB and BC and median AM of one triangle ABC are respectively equal to side PQ and QR and median PN of  $\triangle$ PQR, show-

(a).  $\triangle ABM \cong \triangle PQN$  (b).  $\triangle ABC \cong \triangle PQR$ 

- Q24. In the given figure, ABC and DBC are two triangle on the same base BC such that AB = AC and DB = DC. Prove that  $\angle ABD = \angle ACD$ ,
- **Q25**. If  $\angle E > \angle A$  and  $\angle C > \angle D$ . prove that  $AD > \frac{EC}{EC}$ .
- **Q26**. In triangle PQR, if PQ = PR and S is any point on side PR. Prove that RS < QS.
- Q27. In fig. prove that MN + NO + OP + > 2MO.
- **Q28**. In fig. prove that MN + NO + OP > PM.
- **Q29**. Prove that the angle opposite of the greatest side of a  $\triangle$  is greater than two-third of a right angle.
- **Q30**. AD is the bisector of  $\angle A$  of  $\triangle ABC$ , where D lies on BC. Prove that  $\frac{AB}{BD} = \frac{AC}{CD}$ .
- **Q31**. AB and CD are respectively the smallest and the largest side of a quadrilateral ABCD. Prove that  $\angle A > \angle C$  and  $\angle B > \angle D$ .
- **Q32**. It the bisector of a vertical angle of a triangle also bisects the opposite side; Prove that the triangle is an isosceles triangle.















- **Q33**.  $\triangle$ ABC is an isosceles triangle and  $\angle$ B = 45<sup>o</sup>, find  $\angle$ A<sup>o</sup>.
- **Q34**.  $\triangle$ ABC is an equilateral triangle and  $\angle$ B = 60<sup>0</sup>, find  $\angle$ C<sup>o</sup>.
- **Q35**. In the given fig., AB = AC and  $\angle$ ACD = 120<sup>o</sup>, find  $\angle$ B,  $\angle$ A.
- **Q36**. Prove that in a right triangle, hypotenuse is the longest (or largest) side.
- **Q37**.  $\triangle$  ABC is an isosceles triangle with AB = AC. Draw AP $\perp$ BC to show that  $\angle$ B =  $\angle$ C.
- Q38. AD is an altitude of an isosceles triangle ABC in which AB = AC that:(a). AD bisects BC(b). AD bisects ∠A
- **Q39**. In the given figure, PQ > PR, QS and RS are the bisectors of the  $\angle Q$ ,  $\angle R$  respectively. Prove that SQ > SR.
- Q40. Prove that sum of the quadrilateral is 360 °?
- **Q41**.  $\triangle$ ABC is an isosceles triangle with AB = AC. AD bisects the exterior  $\angle$ QAC. Prove that AD||BC.
- **Q43**.  $\triangle$  ABC is an isosceles triangle in which AB = AC side BA is produced to D such that AD = AB. Show that  $\triangle$ BCD is a right angle.

**Q44**. In the given figure,  $\angle A = \angle C$  and AB = BC. Prove that  $\triangle ABD \cong \triangle CBE$ .

**Q45**. In the given figure, PR > PQ and PS is the bisector of  $\triangle$ QPR. Prove that  $\triangle$ PSR  $\cong \triangle$ PSQ.







