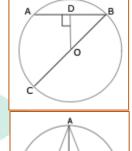
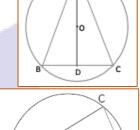
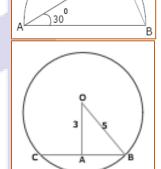
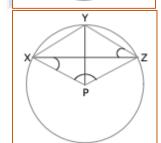
CLASS IX – MATHEMATICS – CHAPTER 10


CIRCLE


Name:			Date:
01 . Any angle in the semicircle is			
(a). Right angle	(b). 180°	(c). 360°	(d). none of these
02 . If the angles subtended by two chords of a circle at the centre are equal the chords are			
(a). not equal	(b). equal	(c). angle equal	(d). line equals
03. How many circles passing through three non-collinear points?			
(a). one	(b). two	(c). three	(d). four
04 . The constant distance is called			
(a). diameter	(b). radius	(c). centre	(d). circle
05. PS and RS are two chords of a circle such that PQ=10cm and Rs= 24cm and PQ RS. The distance			
between PQ and RS is	s 17cm. Find the radius	s of circle	
(a). 10cm	(b). 13cm	(c). 15cm	(d). none of these
06 . A circle is drawn. It divides the plane into			
(a). 3 Parts	(b). 4 Parts	(c). 5 Parts	(d). No Parts
07. The relation between diameter and radius of a circle is			
(a). r=2d	(b). d=r	(c). d=2r	(d). d=2 π r
08 . If P and Q are any two Points on a circle, then PQ is called a			
(a). diamet <mark>er</mark>	(b). secant	(c). chord	(d). radius
09 . What is a di <mark>ameter</mark>			
(a). r = 2d	(b). d =2 π r	(c). d = r	(d). d = 2 r
10 . Two point o <mark>n a circl</mark> e	shows the		
(a). radius	(b). chord	(c). secant	(d). diameters
11. The whole are of a circle is called			
(a). circumf <mark>erence</mark>		(c). sector	(d). segment
12. One half of the whole are of a circle			
(a). semi-circle	(b). circumference	(c). segment	(d). sector
13. Circle having same ce			
	(b). circle	(c). chord	(d). secant
14 . The line which meet a circle in two points is called a			
	(b). diameter	. ,	(d). secant of circle
15 . The sum of either pair of opposite angle of cyclic quadrilateral is			
(a). 360°	(b). 90°	(c). 180°	(d). 270°
16 . Two circle are congruent if they have equal.			
(a). diameter	(b). radius	(c). chord	(d). secant


- **Q01**. AB = DC and diagonal AC and BD intersect at P in cyclic quadrilateral Prove PAB PDC $\Delta \cong \Delta$
- **Q02**. Prove that, \angle CAD = \angle CBD, if ABC and ADC are two right triangles with common hypotenuse AC.
- Q03. Show that, DE||BC, in isosceles triangle ABC, AB = AC and B, C intersects the sides AB and AC at D & E.
- **Q04**. Prove cyclic parallelogram is a rectangle.
- **Q05**. Pair of opposite sides of a cyclic quadrilateral are equal, prove that the other two sides are parallel.
- Q06. ABCD is a rectangle. Prove that the centre of the circle through A, B, C, D is the Point intersection of its diagonals.
- Q07. A line is passing through the centre of a circle. If it bisects chord AB and CD of the circle. Prove AB||CD
- **Q08**. AB and CB are two chords of circle to Prove that BO bisects $\angle ABC$.
- **Q09**. If BC is diameter of circle with centre O and OD is \perp to chord AB so, prove CA=2 OD
- **Q10**. Given a method to find the centre of a circle.
- **Q11**. In circle bisector AD of BAC \angle of ABC \triangle Passes through the center O of the circum circle of \triangle ABC. Prove AB=AC.
- Q12. Prove that the circle drawn with the equal sides as a diameter passes through the Point D. if D is the mid-Point of BC of an isosceles triangle ABC with AB=AC
- **Q13**. C point is taken so that $m \angle CAB = 30^{\circ}$ from a semi-circle with AB as diameter. So find m \angle ACB and m \angle ABC.
- **Q14**. Two different circle can't interact each other at more than two points so, prove it.
- **Q15**. O is the centre and OP AB \perp so, find the length of the chord AB.
- **Q16**. If OA is the Per perpendicular to CB, find the length of AB.
- Q17. AB is chord of a circle and AB Produced to C such that BC=OB and CO joined and produce the circle the circle and meet to D if $\angle ACD=y^\circ$, $\angle AOD=x^\circ$ prove that x=3y.
- **Q18**. Prove that $\angle XPZ = 2(\angle XZY + \angle YXZ)$ if O id the centre of Circle.
- **Q19.** Prove that ADE is an isosceles triangle if OD \perp AB and OE \perp AC.
- **Q20**. The exterior angle formed by producing a side of a cyclic quadrilateral is equal to the interior opposite angle. Prove.
- **Q21**. Show that $\angle OMN = \angle ONM$, if AB and CD are two equal chord.



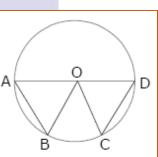
DCA, PLOT 18 C, SHRI GANGA VIHAR, DEENPUR

- **Q22**. From the above question. Show that $\angle BMN = \angle DNM$.
- **Q23**. ABCD is a quadrilateral in which AD=BC and \angle ADC = \angle BCD show A, B, C, D lie on a circle
- Q24. Diagonal is also equal when pair of opposite sides of a cyclic quadrilateral are equal. Prove.
- **Q25**. In isosceles triangle ABC, AD = AE and D and E are equal on side AB and AC. So prove that B,C,E and Δ are con cyclic
- **Q26**. If two non parallel sides of a trapezium are equal, prove that it is cyclic.
- **Q27**. The bisector of $B \ order of$ an isosceles triangle ABC with AB = AC meets the circumcircle of ABC Δ at P if AP and BC produced meet at Q, prove that CQ = CA.
- Q28. If a Pair of opposite sides of a cyclic quadrilateral are equal, then the diagram are also equal.
- **Q29**. \angle DBC = 70° and \angle CAB = 30° find \angle BCD.
- Q30. OC radius equal to chord CD and AB is diameter and AC and BD produced meet at P so prove ∠CPD = 60°
- **Q31**. Prove that the line joining the midpoint of the two parallel chords of a circle passes through the centre of the circle.
- **Q32**. Prove that OA is the perpendicular bisector of BC if $\overrightarrow{AB} \cong \overrightarrow{AC}$
- Q33. The two chords bisect each other AB and BD show that
 - (i) AC and BD are diameter (ii) ABCD is a rectangle

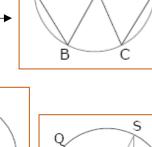
Q38. Prove OM \perp AB if AB is chord of the circle with centre O. O is joined to the

- **Q34**. In ABCD cyclic quadrilateral diagonal Intersect at Q. \angle DBC = 70° and \angle CAB = 30°. So find \angle BCD.
- **Q35**. Find the value of x if A, B, C, D are concyclic points.

radius. —


midpoint M and AB.

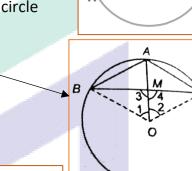
С


Ο

A

70

30

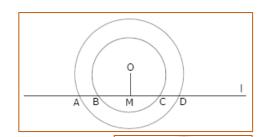


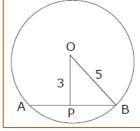
入0 40

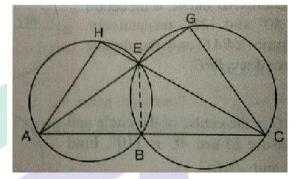
65

R

- **Q39**. ABCD is a cyclic quadrilateral in a circle with centre O. Prove that $\angle A = \angle C = 180^{\circ}$.
- **Q40**. Calculate the measure of \angle PQB, where O is the centre of the circle.
- **Q41**. In the given Fig. \angle PQR = 40 ° \angle SPR = 65 ° find \angle SRP.


Q37. Prove that OM Bisect AB. If OM \perp AB.


Q42. Find the length of AB, CD, AC and BD if two econometric circles with centre O have A, B, C, D as the Point of intersection with line ∠.


Q43. If OP \perp AB find the length of the chord AB.

Q44. OP \perp AB, OQ \perp CD, AB||CD. AB=6cm and CD = 8 cm, Determine PQ, and circle of radius 5 cm.

Q45. Show that ∠AHE and ∠EGC are supplementary. Given that ABC AEG and HEC are straight lines.

