DCA CLASSES

CLASS XI – MATHEMATICS – CHAPTER 08 BINOMIAL THEOREM

Name:

Date:

- **Q01**. Which is larger (1.01)^{10,00000} or 10,000
- **Q02**. Prove that $\sum_{r=0}^{n} 3^{r} {}^{n}C_{r} = 4^{n}$
- **Q03**. Using binomial theorem, prove that 6ⁿ 5ⁿ always leaves remainder 1 when divided by 25.
- Q04. Find the 13th term in the expansion of $[9x (1/3\sqrt{x})]^{18}$, $x \neq 0$
- **Q05**. Find the term independent of x in the expansion of $[\sqrt[3]{x} + (1/2\sqrt[3]{x})]^{18}$, x > 0
- **Q06**. Find the coefficient of x^5 in the expansion of the product $(1 + 2x)^5(1 x)^7$
- **Q07**. Find n , if the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of $[\sqrt[4]{2} + (1/\sqrt[4]{3})]^n$ is $\sqrt{6}$:1
- Q08. The coefficients of three consecutive terms in the expansion of (1+a)ⁿare in the ratio 1 : 7 : 42. Find n
- **Q09**. Compute (98)⁵
- **Q10**. Expand $[x + (1/x)]^6$
- **Q11**. Find the fourth term from the end in the expansion of $[(3/x^2) (x^3/3)]^9$.
- **Q12**. Find the middle term of $[2x (x^2/4)]^9$.
- Q13. Find the coefficient of a⁵b⁷ in (a 2b)¹².
- **Q14**. Find a positive value of m for which the coefficient of x^2 in the expansion $(1 + x)^m$ is 6.
- Q15. Show that the coefficient of the middle term in the expansion of $(1 + x)^m$ is equal to the sum of the coefficients of two middle terms in the expansion of $(1 + x)^{2n-1}$.
- **Q16**. Find a if the coefficient of x^2 and x^3 in the expansion of $(3 + ax)^9$ are equal.
- **Q17**. The second, third and fourth terms in the binomial expansion(x + a)ⁿ are 240, 720 and 1080 respectively. Find x, a and n.
- **Q18**. If a and b are distinct integers, prove that a-b is a factor of , aⁿ bⁿ whenever n is positive.
- **Q19.** Find $(a + b)^4 (a b)^4$. Hence evaluate $(\sqrt{3} + \sqrt{2})^4 + (\sqrt{3} \sqrt{2})^4$.
- **Q20**. Show that 9n+1 8n 9 is divisible by 64, whenever n is positive integer.
- **Q21**. Find the general term in the expansion of $(x^2 yx)^{12}$.
- **Q22**. In the expansion of $(1 + a)^{m+n}$ prove that coefficients of a^m and a^n are equal.
- **Q23**. Expand $(1 x + x^2)^4$.
- **Q24**. Find the sixth term of the expansion $[y^{1/2} + x^{1/3}]^n$ if the binomial coefficient of the third term from the end is 45.

DCA CLASSES

- **Q25**. The sum of the coefficients of the first three terms in the expansion of $[x (3/x^2)]^m$ m being natural no. is 559. Find the term of expansion.
- **Q26**. Show that the middle term in the expansion of $(1 + x)^{2n}$ is $[1.3.5....(2n 1) 2^{n}.x^{n}]/n!$.
- **Q27**. What is the middle term in the expansion of $(1 + x)^{2n+1}$.
- Q28. When n is a positive integer, the number of terms in the expansion of $(1 + a)^n$ is
- **Q29**. Write the general term $(x^2 y)^6$
- **Q30**. In the expansion of $[x + (1/x)]^6$, find the 3rd term from the end .
- **Q31**. Expand $(1 + x)^n$
- **Q32**. Find a if the 17^{th} and 18^{th} terms of the expansion $(2 + a)^{50}$ are equal.
- Q33. Find the term independent of x in the expansion of $[(3x^2/2) (1/3x)]^6$
- **Q34.** In the expansion of $[\sqrt[3]{2} + (1/\sqrt[3]{3})]^n$, the ratio of 7th term from the beginning to the 7th term the end is 1 : 6 .Find n
- Q35. If the coefficient of 5th,6th and 7th terms in the expansion of (1+ x)ⁿ are in A.P, then find the value of n.
- **Q36**. Find the number of terms in the expansions of $(1 2x + x^2)^7$
- **Q37**. Find the coefficients of x^5 in $(x + 3)^9$.
- **Q38**. Find the term independent of $x [x + (1/x)]^{10}$
- Q39. Expand (a +b)ⁿ
- **Q40**. If the coefficients of (r 5)th and (2r 1)th terms in the expansion of (1 + x)³⁴ are equal, find r.
- Q41. Show that the coefficient of the middle term in the expansion of $(1 + x)^{2n}$ is equal to the sum of the coefficients of two middle terms in the expansion of $(1 + x)^{2n-1}$
- Q42. Find the value of, r if the coefficient of (2r + 4)th and (r 2)th terms in the expansion of $1(+x)^{18}$ are equal.
- Q43. If P be the sum of odd terms and Q that of even terms in the expansion of (1 + a)ⁿ prove that

(a)
$$P^2 - Q^2 = (x^2 - a^2)^n$$

- (b) $4PQ = (x + a)^{2n} (x a)^{2n}$
- (c) $2(P^2 + Q^2) = [(x + a)^{2n} + (x a)^{2n}]$
- **Q44**. If three successive coefficient In the expansion of $(1 + x)^n$ are 220,495 and 792 then, find n.