DCA CLASSES

CLASS XII – MATHEMATICS – CHAPTER 03 MATRIX

Name:

Date:

- **Q01**. If a matrix has 8 elements, what are the possible orders it can have.
- Q02. Identity matrix of orders n denoted by.
- Q03. Define square matrix.
- **Q04**. The no. of all possible metrics of order 3 x 3 with each entry 0 or 1 is ______

Q05. A =
$$\begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix}$$
. Write (a). a_{33} , a_{12} (b). What is order?

- **Q06**. Two matrices A = $[a_{ij}]$ and B = $[b_{ij}]$ are said to be equal if _____
- Q07. Define scalar matrix.
- **Q08**. Every diagonal element of a skew symmetric matrix is _____
- **Q09.** If $A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$, then A + A' = I. Find α .

Q10.
$$A = \begin{bmatrix} 1 & 5 \\ 6 & 7 \end{bmatrix}$$
. Find $A + A'$.

Q11. If $A = \begin{bmatrix} \alpha & \beta \\ \beta & -\alpha \end{bmatrix}$ and $A^2 = I$. Find relation.

- **Q12**. If the matrix A is both symmetric and skews symmetric, then A will be.
- Q13. Matrices A and B will be inverse of each other only if ______
- Q14. If A, B are symmetric matrices of same order, them AB BA is a ______.
- **Q15**. Diagonal of skew symmetric matrix are ______.
- Q16. If A and B are symmetric matrices of the same order, prove that AB + BA is symmetric

Q17. If A =
$$\begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$$
. Prove that A – A' is a skew – symmetric matrix

- **Q18**. If A is any square matrix, prove that AA' is symmetric.
- **Q19**. Solve for x and y given that $\begin{bmatrix} 2 & -3 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$.

DCA CLASSES

Q20. Give example of matrices such that AB = 0, BA = 0, $A \neq 0$, $B \neq 0$

Q21. Show that
$$A = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}$$
, is skew symmetric matrix.
Q22. If $A = \begin{bmatrix} -1 & 5 \\ 3 & 2 \end{bmatrix}$. Show that (3A)' = 3A'.

Q23. Solve for x and y, given that $\begin{bmatrix} x & y \\ 3y & x \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$

Q24. Given example of matrix A and B such that AB = 0 but $A \neq 0$, $B \neq 0$.

Q25. Find x and y if
$$x + y = \begin{bmatrix} 5 & 2 \\ 0 & 9 \end{bmatrix}$$
 and $x - y = \begin{bmatrix} 3 & 6 \\ 0 & -1 \end{bmatrix}$
Q26. $F(x) = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Show that $f(x).f(y) = f(x+y)$
Q27. If $A = \begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix} I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Find K. So that $A^2 = KA - 2I$
Q28. $A = \begin{bmatrix} -2 \\ 4 \\ 5 \end{bmatrix} B = \begin{bmatrix} 1 & 3 & -6 \end{bmatrix}$. Prove (AB)' = B'A'

Q29. Construct a 3 x 4 matrix, whose element are given by aij = $\frac{1}{2}|-3i + j|$.

Q30. Obtain the inverse of the following matrix using elementary operations $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$.

Q31. Let $A = \begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 5 & 2 \\ 7 & 4 \end{bmatrix}$ and $C = \begin{bmatrix} 2 & 5 \\ 3 & 8 \end{bmatrix}$. Find a matrix D, such that CD - AB = 0. **Q32.** If $A = \begin{bmatrix} 3 & -4 \\ 1 & 1 \end{bmatrix}$, then prove that $A' = \begin{bmatrix} 1 + 2n & -4n \\ n & 1 - 2n \end{bmatrix}$ where n is any positive integer. **Q33.** For what values of $= \begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ x \end{bmatrix}$. **Q34.** Find the matrix X so that $X \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} -7 & -8 & -9 \\ 2 & 4 & 6 \end{bmatrix}$. **Q35.** $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, Show that $(aI + bA)^n = a^n I + na^{n-1}bA$, Where I is the identify matrix of order 2

and $n \in N$.

DCA, PLOT 18 C, SHRI GANGA VIHAR, DEENPUR,

DCA CLASSES
Q36. Find the values of x, y, z if the matrix
$$A = \begin{bmatrix} 0 & 2y & z \\ x & -y & -z \\ x & -y & z \end{bmatrix}$$
 Satisfy the equation $A'A = I_3$.
Q37. If $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$. Show that $A^2 - 5A = 7I = 0$.
Q38. If A is a square matrix such that $A^2 = A$, then $(I + A)^3 - 7A$ is equal to
Q39. Construct 2x3 matrix whose element aij are given by $a_{ij} = \begin{bmatrix} 2i + j & \text{when } i < j \\ 4i , j & \text{when } i = j \\ i + 2j & \text{when } i > j \end{bmatrix}$.
Q40. If $A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1 \end{bmatrix}$, then show that $A^3 - 23A - 40I = 0$.
Q41. Express the matrix $B = \begin{bmatrix} 1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1 \end{bmatrix}$ as the sum of a symmetric and a skew symmetric matrix.
Q42. If $A = \begin{bmatrix} 8 & 0 \\ 4 & -2 \\ 3 & 6 \end{bmatrix} B = \begin{bmatrix} 2 & -2 \\ 4 & 2 \\ -5 & 1 \end{bmatrix}$ then find the matrix X such that $2A + 3X = 5B$.
Q43. If $A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$, then prove that $A^n = \begin{bmatrix} \cos n\theta & \sin n\theta \\ -\sin n\theta & \cos n\theta \end{bmatrix}$ where n is any positive integer.
Q44. Find X and Y, if $2x + 3y = \begin{bmatrix} 2 & 3 \\ 4 & 0 \end{bmatrix}$ and $3x + 2y = \begin{bmatrix} 2 & -2 \\ -1 & 5 \end{bmatrix}$

Q45. If $A = \begin{bmatrix} \cos^2 \alpha & \cos \alpha \sin \alpha \\ \cos \alpha \sin \alpha & \sin^2 \alpha \end{bmatrix}$, $B = \begin{bmatrix} \cos^2 \beta & \cos \beta \sin \beta \\ \cos \beta \sin \beta & \sin^2 \beta \end{bmatrix}$ where n is any positive

Integer. Show that AB is a zero matrix if a and b differ by an odd multiple of $\frac{\pi}{2}$.

Q46. If
$$f(x) = x^2 - 5x + 7$$
 and $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$ find $f(A)$.
Q47. $A = \begin{bmatrix} 4 & 3 \\ 2 & 5 \end{bmatrix}$, find x and y such that $A^2 - xA + yI = 0$.
Q48. $A = \begin{bmatrix} 0 & -\tan \alpha/2 \\ \tan \alpha/2 & 0 \end{bmatrix}$, Prove I + A = (I - A) $\begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$